Convert the inequality to an equation.

Factor using the rational roots test.

If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.

Find every combination of . These are the possible roots of the polynomial function.

Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.

Substitute into the polynomial.

Raise to the power of .

Raise to the power of .

Multiply by .

Subtract from .

Multiply by .

Add and .

Subtract from .

Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.

Divide by .

Write as a set of factors.

Factor using the AC method.

Factor using the AC method.

Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .

Write the factored form using these integers.

Remove unnecessary parentheses.

If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .

Set the first factor equal to .

Add to both sides of the equation.

Set the next factor equal to .

Add to both sides of the equation.

Set the next factor equal to .

Add to both sides of the equation.

The final solution is all the values that make true.

Use each root to create test intervals.

Test a value on the interval to see if it makes the inequality true.

Choose a value on the interval and see if this value makes the original inequality true.

Replace with in the original inequality.

The left side is less than the right side , which means that the given statement is always true.

True

True

Test a value on the interval to see if it makes the inequality true.

Choose a value on the interval and see if this value makes the original inequality true.

Replace with in the original inequality.

The left side is not less than the right side , which means that the given statement is false.

False

False

Test a value on the interval to see if it makes the inequality true.

Choose a value on the interval and see if this value makes the original inequality true.

Replace with in the original inequality.

The left side is less than the right side , which means that the given statement is always true.

True

True

Test a value on the interval to see if it makes the inequality true.

Choose a value on the interval and see if this value makes the original inequality true.

Replace with in the original inequality.

The left side is not less than the right side , which means that the given statement is false.

False

False

Compare the intervals to determine which ones satisfy the original inequality.

True

False

True

False

True

False

True

False

The solution consists of all of the true intervals.

or

Convert the inequality to interval notation.

Convert to Interval Notation x^3-8x^2+17x-10<0