# Determine if a Polynomial -5m^2(6m-1)-6(9m-4)

-5m2(6m-1)-6(9m-4)
A polynomial is a combination of terms separated using + or – signs. Polynomials cannot contain any of the following:
1. Variables raised to a negative or fractional exponent. (2x-2,x12,…).
2. Variables in the denominator. (1x,1×2,…).
3. Variables under a radical. (x,x3,…).
4. Special features. (trig functions, absolute values, logarithms, …).
Simplify each term.
Apply the distributive property.
-5m2(6m)-5m2⋅-1-6(9m-4)
Rewrite using the commutative property of multiplication.
-5⋅6(m2m)-5m2⋅-1-6(9m-4)
Multiply -1 by -5.
-5⋅6(m2m)+5m2-6(9m-4)
Simplify each term.
Multiply m2 by m by adding the exponents.
Multiply m2 by m.
Raise m to the power of 1.
-5⋅6(m2m1)+5m2-6(9m-4)
Use the power rule aman=am+n to combine exponents.
-5⋅6m2+1+5m2-6(9m-4)
-5⋅6m2+1+5m2-6(9m-4)
-5⋅6m3+5m2-6(9m-4)
-5⋅6m3+5m2-6(9m-4)
Multiply -5 by 6.
-30m3+5m2-6(9m-4)
-30m3+5m2-6(9m-4)
Apply the distributive property.
-30m3+5m2-6(9m)-6⋅-4
Multiply 9 by -6.
-30m3+5m2-54m-6⋅-4
Multiply -6 by -4.
-30m3+5m2-54m+24
-30m3+5m2-54m+24
Determine if the expression breaks any of the rules.
Does not break any of the rules
Determine if the expression is a polynomial.
Polynomial
Determine if a Polynomial -5m^2(6m-1)-6(9m-4)