Divide (3y^3-y+4)/(y-2)

Math
3y3-y+4y-2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
y23y3+0y2y+4
Divide the highest order term in the dividend 3y3 by the highest order term in divisor y.
3y2
y23y3+0y2y+4
Multiply the new quotient term by the divisor.
3y2
y23y3+0y2y+4
+3y36y2
The expression needs to be subtracted from the dividend, so change all the signs in 3y3-6y2
3y2
y23y3+0y2y+4
3y3+6y2
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3y2
y23y3+0y2y+4
3y3+6y2
+6y2
Pull the next terms from the original dividend down into the current dividend.
3y2
y23y3+0y2y+4
3y3+6y2
+6y2y
Divide the highest order term in the dividend 6y2 by the highest order term in divisor y.
3y2+6y
y23y3+0y2y+4
3y3+6y2
+6y2y
Multiply the new quotient term by the divisor.
3y2+6y
y23y3+0y2y+4
3y3+6y2
+6y2y
+6y212y
The expression needs to be subtracted from the dividend, so change all the signs in 6y2-12y
3y2+6y
y23y3+0y2y+4
3y3+6y2
+6y2y
6y2+12y
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3y2+6y
y23y3+0y2y+4
3y3+6y2
+6y2y
6y2+12y
+11y
Pull the next terms from the original dividend down into the current dividend.
3y2+6y
y23y3+0y2y+4
3y3+6y2
+6y2y
6y2+12y
+11y+4
Divide the highest order term in the dividend 11y by the highest order term in divisor y.
3y2+6y+11
y23y3+0y2y+4
3y3+6y2
+6y2y
6y2+12y
+11y+4
Multiply the new quotient term by the divisor.
3y2+6y+11
y23y3+0y2y+4
3y3+6y2
+6y2y
6y2+12y
+11y+4
+11y22
The expression needs to be subtracted from the dividend, so change all the signs in 11y-22
3y2+6y+11
y23y3+0y2y+4
3y3+6y2
+6y2y
6y2+12y
+11y+4
11y+22
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3y2+6y+11
y23y3+0y2y+4
3y3+6y2
+6y2y
6y2+12y
+11y+4
11y+22
+26
The final answer is the quotient plus the remainder over the divisor.
3y2+6y+11+26y-2
Divide (3y^3-y+4)/(y-2)

Download our
App from the store

Create a High Performed UI/UX Design from a Silicon Valley.

Scroll to top