Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | + | + | + | + | + |
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | + | + | + | + |
Multiply the new quotient term by the divisor.
+ | + | + | + | + | + | ||||||||||
+ | + | + |
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | + | + | + | + | ||||||||||
– | – | – |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – |
Pull the next terms from the original dividend down into the current dividend.
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + |
Divide the highest order term in the dividend by the highest order term in divisor .
– | |||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + |
Multiply the new quotient term by the divisor.
– | |||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + | |||||||||||||
– | – | – |
The expression needs to be subtracted from the dividend, so change all the signs in
– | |||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + | |||||||||||||
+ | + | + |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
– | |||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + | |||||||||||||
+ | + | + | |||||||||||||
+ | + |
Pull the next terms from the original dividend down into the current dividend.
– | |||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + | |||||||||||||
+ | + | + | |||||||||||||
+ | + | + |
Divide the highest order term in the dividend by the highest order term in divisor .
– | + | ||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + | |||||||||||||
+ | + | + | |||||||||||||
+ | + | + |
Multiply the new quotient term by the divisor.
– | + | ||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + | |||||||||||||
+ | + | + | |||||||||||||
+ | + | + | |||||||||||||
+ | + | + |
The expression needs to be subtracted from the dividend, so change all the signs in
– | + | ||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + | |||||||||||||
+ | + | + | |||||||||||||
+ | + | + | |||||||||||||
– | – | – |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
– | + | ||||||||||||||
+ | + | + | + | + | + | ||||||||||
– | – | – | |||||||||||||
– | – | + | |||||||||||||
+ | + | + | |||||||||||||
+ | + | + | |||||||||||||
– | – | – | |||||||||||||
Since the remander is , the final answer is the quotient.
Divide Using Long Polynomial Division (3x^4+7x^3+2x^2+13x+5)÷(x^2+3x+1)