# Factor by Grouping -4a^2+6a^(3-10-(4a)÷3a-5)

-4a2+6a3-10-4a÷3a-5
The polynomial cannot be factored using the grouping method. Try a different method, or if you aren’t sure, choose Factor.
The polynomial cannot be factored using the grouping method.
Factor 2 out of -4a2+6a3-10-4a÷3a-5.
Factor 2 out of -4a2.
2(-2a2)+6a3-10-4a÷3a-5
Factor 2 out of 6a3-10-4a÷3a-5.
2(-2a2)+2(3a3-10-4a÷3a-5)
Factor 2 out of 2(-2a2)+2(3a3-10-4a÷3a-5).
2(-2a2+3a3-10-4a÷3a-5)
2(-2a2+3a3-10-4a÷3a-5)
Simplify each term.
Rewrite the division as a fraction.
2(-2a2+3a3-10-4a3a-5)
Cancel the common factor of a.
Cancel the common factor.
2(-2a2+3a3-10-4a3a-5)
Rewrite the expression.
2(-2a2+3a3-10-43-5)
2(-2a2+3a3-10-43-5)
2(-2a2+3a3-10-43-5)
Find the common denominator.
Write 3 as a fraction with denominator 1.
2(-2a2+3a31-10-43-5)
Multiply 31 by 33.
2(-2a2+3a31⋅33-10-43-5)
Multiply 31 and 33.
2(-2a2+3a3⋅33-10-43-5)
Write -10 as a fraction with denominator 1.
2(-2a2+3a3⋅33+-101-43-5)
Multiply -101 by 33.
2(-2a2+3a3⋅33+-101⋅33-43-5)
Multiply -101 and 33.
2(-2a2+3a3⋅33+-10⋅33-43-5)
Write -5 as a fraction with denominator 1.
2(-2a2+3a3⋅33+-10⋅33-43+-51)
Multiply -51 by 33.
2(-2a2+3a3⋅33+-10⋅33-43+-51⋅33)
Multiply -51 and 33.
2(-2a2+3a3⋅33+-10⋅33-43+-5⋅33)
2(-2a2+3a3⋅33+-10⋅33-43+-5⋅33)
Combine fractions with similar denominators.
2(-2a2+3a3⋅3-10⋅3-4-5⋅33)
Multiply 3 by 3.
2(-2a2+3a9-10⋅3-4-5⋅33)
Multiply -10 by 3.
2(-2a2+3a9-30-4-5⋅33)
Multiply -5 by 3.
2(-2a2+3a9-30-4-153)
Simplify the numerator.
Subtract 30 from 9.
2(-2a2+3a-21-4-153)
Subtract 4 from -21.
2(-2a2+3a-25-153)
Subtract 15 from -25.
2(-2a2+3a-403)
2(-2a2+3a-403)
Move the negative in front of the fraction.
2(-2a2+3a-403)
Rewrite the expression using the negative exponent rule b-n=1bn.
2(-2a2+31a403)
Combine 3 and 1a403.
2(-2a2+3a403)
Factor by Grouping -4a^2+6a^(3-10-(4a)÷3a-5)

Scroll to top