Differentiate using the Quotient Rule which states that is where and .

By the Sum Rule, the derivative of with respect to is .

Differentiate using the Power Rule which states that is where .

Since is constant with respect to , the derivative of with respect to is .

Simplify the expression.

Add and .

Multiply by .

By the Sum Rule, the derivative of with respect to is .

Differentiate using the Power Rule which states that is where .

Since is constant with respect to , the derivative of with respect to is .

Simplify the expression.

Add and .

Multiply by .

Apply the distributive property.

Simplify the numerator.

Combine the opposite terms in .

Subtract from .

Add and .

Multiply by .

Add and .

Find the Derivative – d/dx (x-1)/(x+1)