To apply the Chain Rule, set as .

The derivative of with respect to is .

Replace all occurrences of with .

By the Sum Rule, the derivative of with respect to is .

Since is constant with respect to , the derivative of with respect to is .

Differentiate using the Power Rule which states that is where .

Multiply by .

Since is constant with respect to , the derivative of with respect to is .

Combine fractions.

Add and .

Combine and .

Find the Derivative – d/dx y=arcsin(4x+1)