Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .

– | + | – | – | + | – |

Divide the highest order term in the dividend by the highest order term in divisor .

– | + | – | – | + | – |

Multiply the new quotient term by the divisor.

– | + | – | – | + | – | ||||||||||

+ | – | + |

The expression needs to be subtracted from the dividend, so change all the signs in

– | + | – | – | + | – | ||||||||||

– | + | – |

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – |

Pull the next terms from the original dividend down into the current dividend.

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + |

Divide the highest order term in the dividend by the highest order term in divisor .

+ | |||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + |

Multiply the new quotient term by the divisor.

+ | |||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

+ | – | + |

The expression needs to be subtracted from the dividend, so change all the signs in

+ | |||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

– | + | – |

+ | |||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

– | + | – | |||||||||||||

– | + |

Pull the next terms from the original dividend down into the current dividend.

+ | |||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

– | + | – | |||||||||||||

– | + | – |

Divide the highest order term in the dividend by the highest order term in divisor .

+ | – | ||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

– | + | – | |||||||||||||

– | + | – |

Multiply the new quotient term by the divisor.

+ | – | ||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

– | + | – | |||||||||||||

– | + | – | |||||||||||||

– | + | – |

The expression needs to be subtracted from the dividend, so change all the signs in

+ | – | ||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

– | + | – | |||||||||||||

– | + | – | |||||||||||||

+ | – | + |

+ | – | ||||||||||||||

– | + | – | – | + | – | ||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

– | + | – | |||||||||||||

– | + | – | |||||||||||||

+ | – | + | |||||||||||||

Since the remander is , the final answer is the quotient.

Since the final term in the resulting expression is not a fraction, the remainder is .

Find the Remainder (2x^4-3x^3-3x^2+7x-3)÷(x^2-2x+1)