Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
– | + | + | + | – | + | + |
Divide the highest order term in the dividend by the highest order term in divisor .
– | + | + | + | – | + | + |
Multiply the new quotient term by the divisor.
– | + | + | + | – | + | + | |||||||||||
+ | – | + | + |
The expression needs to be subtracted from the dividend, so change all the signs in
– | + | + | + | – | + | + | |||||||||||
– | + | – | – |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
– | + | + | + | – | + | + | |||||||||||
– | + | – | – | ||||||||||||||
+ | – | – |
Pull the next terms from the original dividend down into the current dividend.
– | + | + | + | – | + | + | |||||||||||
– | + | – | – | ||||||||||||||
+ | – | – | + |
Divide the highest order term in the dividend by the highest order term in divisor .
+ | |||||||||||||||||
– | + | + | + | – | + | + | |||||||||||
– | + | – | – | ||||||||||||||
+ | – | – | + |
Multiply the new quotient term by the divisor.
+ | |||||||||||||||||
– | + | + | + | – | + | + | |||||||||||
– | + | – | – | ||||||||||||||
+ | – | – | + | ||||||||||||||
+ | – | + | + |
The expression needs to be subtracted from the dividend, so change all the signs in
+ | |||||||||||||||||
– | + | + | + | – | + | + | |||||||||||
– | + | – | – | ||||||||||||||
+ | – | – | + | ||||||||||||||
– | + | – | – |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | |||||||||||||||||
– | + | + | + | – | + | + | |||||||||||
– | + | – | – | ||||||||||||||
+ | – | – | + | ||||||||||||||
– | + | – | – | ||||||||||||||
+ | – | – |
The final answer is the quotient plus the remainder over the divisor.
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.
Find the Remainder (3x^4-x^2)/(x^3-x^2+1)