Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | + | – | + | – |
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | – | + | – |
Multiply the new quotient term by the divisor.
+ | + | – | + | – | |||||||||
+ | + |
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | – | + | – | |||||||||
– | – |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– |
Pull the next terms from the original dividend down into the current dividend.
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – |
Divide the highest order term in the dividend by the highest order term in divisor .
– | |||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – |
Multiply the new quotient term by the divisor.
– | |||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
– | – |
The expression needs to be subtracted from the dividend, so change all the signs in
– | |||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
– | |||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ |
Pull the next terms from the original dividend down into the current dividend.
– | |||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + |
Divide the highest order term in the dividend by the highest order term in divisor .
– | + | ||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + |
Multiply the new quotient term by the divisor.
– | + | ||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
+ | + |
The expression needs to be subtracted from the dividend, so change all the signs in
– | + | ||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
– | – |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
– | + | ||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
– | – | ||||||||||||
– |
Pull the next terms from the original dividend down into the current dividend.
– | + | ||||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
– | – | ||||||||||||
– | – |
Divide the highest order term in the dividend by the highest order term in divisor .
– | + | – | |||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
– | – | ||||||||||||
– | – |
Multiply the new quotient term by the divisor.
– | + | – | |||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
– | – | ||||||||||||
– | – | ||||||||||||
– | – |
The expression needs to be subtracted from the dividend, so change all the signs in
– | + | – | |||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + |
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
– | + | – | |||||||||||
+ | + | – | + | – | |||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
– | – | ||||||||||||
– | – | ||||||||||||
+ | + | ||||||||||||
Since the remander is , the final answer is the quotient.
Since the final term in the resulting expression is not a fraction, the remainder is .
Find the Remainder (3x^4+2x^3-x^2+2x-24)/(x+2)