Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .

+ | + | – | + | + | + | – | – |

Divide the highest order term in the dividend by the highest order term in divisor .

– | |||||||||||||||||

+ | + | – | + | + | + | – | – |

Multiply the new quotient term by the divisor.

– | |||||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

– | + | + |

The expression needs to be subtracted from the dividend, so change all the signs in

– | |||||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

+ | – | – |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

– | |||||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

+ | – | – | |||||||||||||||

+ |

Pull the next term from the original dividend down into the current dividend.

– | |||||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

+ | – | – | |||||||||||||||

+ | + | – |

Divide the highest order term in the dividend by the highest order term in divisor .

– | + | + | |||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

+ | – | – | |||||||||||||||

+ | + | – |

Multiply the new quotient term by the divisor.

– | + | + | |||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

+ | – | – | |||||||||||||||

+ | + | – | |||||||||||||||

+ | + | + |

The expression needs to be subtracted from the dividend, so change all the signs in

– | + | + | |||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

+ | – | – | |||||||||||||||

+ | + | – | |||||||||||||||

– | – | – |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

– | + | + | |||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

+ | – | – | |||||||||||||||

+ | + | – | |||||||||||||||

– | – | – | |||||||||||||||

– |

Pull the next term from the original dividend down into the current dividend.

– | + | + | |||||||||||||||

+ | + | – | + | + | + | – | – | ||||||||||

+ | – | – | |||||||||||||||

+ | + | – | |||||||||||||||

– | – | – | |||||||||||||||

– | – |

The final answer is the quotient plus the remainder over the divisor.

Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.

Find the Remainder (-7x^5+3x^3-6x-8)/(x^2)