Find the Roots (Zeros) x^3-6x=3x^2-8

Math
Subtract from both sides of the equation.
Move to the left side of the equation by adding it to both sides.
Factor the left side of the equation.
Tap for more steps…
Reorder terms.
Factor using the rational roots test.
Tap for more steps…
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Find every combination of . These are the possible roots of the polynomial function.
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps…
Substitute into the polynomial.
Raise to the power of .
Raise to the power of .
Multiply by .
Subtract from .
Multiply by .
Subtract from .
Add and .
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Divide by .
Write as a set of factors.
Factor.
Tap for more steps…
Factor using the AC method.
Tap for more steps…
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Write the factored form using these integers.
Remove unnecessary parentheses.
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set the first factor equal to and solve.
Tap for more steps…
Set the first factor equal to .
Add to both sides of the equation.
Set the next factor equal to and solve.
Tap for more steps…
Set the next factor equal to .
Add to both sides of the equation.
Set the next factor equal to and solve.
Tap for more steps…
Set the next factor equal to .
Subtract from both sides of the equation.
The final solution is all the values that make true.
Find the Roots (Zeros) x^3-6x=3x^2-8

Download our
App from the store

Create a High Performed UI/UX Design from a Silicon Valley.

Scroll to top