Find the Roots (Zeros) x^4+5x^3+7x^2-3x-10=0

Math
Factor the left side of the equation.
Tap for more steps…
Factor using the rational roots test.
Tap for more steps…
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Find every combination of . These are the possible roots of the polynomial function.
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps…
Substitute into the polynomial.
Raise to the power of .
Raise to the power of .
Multiply by .
Add and .
Raise to the power of .
Multiply by .
Add and .
Multiply by .
Subtract from .
Subtract from .
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Divide by .
Write as a set of factors.
Factor using the rational roots test.
Tap for more steps…
Factor using the rational roots test.
Tap for more steps…
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Find every combination of . These are the possible roots of the polynomial function.
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps…
Substitute into the polynomial.
Raise to the power of .
Raise to the power of .
Multiply by .
Add and .
Multiply by .
Subtract from .
Add and .
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Divide by .
Write as a set of factors.
Remove unnecessary parentheses.
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set the first factor equal to and solve.
Tap for more steps…
Set the first factor equal to .
Add to both sides of the equation.
Set the next factor equal to and solve.
Tap for more steps…
Set the next factor equal to .
Subtract from both sides of the equation.
Set the next factor equal to and solve.
Tap for more steps…
Set the next factor equal to .
Use the quadratic formula to find the solutions.
Substitute the values , , and into the quadratic formula and solve for .
Simplify.
Tap for more steps…
Simplify the numerator.
Tap for more steps…
Raise to the power of .
Multiply by .
Multiply by .
Subtract from .
Rewrite as .
Rewrite as .
Rewrite as .
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
Move to the left of .
Multiply by .
Simplify .
Simplify the expression to solve for the portion of the .
Tap for more steps…
Simplify the numerator.
Tap for more steps…
Raise to the power of .
Multiply by .
Multiply by .
Subtract from .
Rewrite as .
Rewrite as .
Rewrite as .
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
Move to the left of .
Multiply by .
Simplify .
Change the to .
Simplify the expression to solve for the portion of the .
Tap for more steps…
Simplify the numerator.
Tap for more steps…
Raise to the power of .
Multiply by .
Multiply by .
Subtract from .
Rewrite as .
Rewrite as .
Rewrite as .
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
Move to the left of .
Multiply by .
Simplify .
Change the to .
The final answer is the combination of both solutions.
The final solution is all the values that make true.
Find the Roots (Zeros) x^4+5x^3+7x^2-3x-10=0

Download our
App from the store

Create a High Performed UI/UX Design from a Silicon Valley.

Scroll to top