, , , , ,

This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by gives the next term. In other words, .

Geometric Sequence:

This is the form of a geometric sequence.

Substitute in the values of and .

Apply the product rule to .

One to any power is one.

Combine and .

Identify the Sequence 10 , 5 , 2.5 , 1.25 , 0.625 , 0.3125