(14a4b6)2(a6c3)7
Apply the product rule to 14a4b6.
(14a4)2(b6)2(a6c3)7
Apply the product rule to 14a4.
142(a4)2(b6)2(a6c3)7
142(a4)2(b6)2(a6c3)7
Raise 14 to the power of 2.
196(a4)2(b6)2(a6c3)7
Apply the power rule and multiply exponents, (am)n=amn.
196a4⋅2(b6)2(a6c3)7
Multiply 4 by 2.
196a8(b6)2(a6c3)7
196a8(b6)2(a6c3)7
Apply the power rule and multiply exponents, (am)n=amn.
196a8b6⋅2(a6c3)7
Multiply 6 by 2.
196a8b12(a6c3)7
196a8b12(a6c3)7
Apply the product rule to a6c3.
196a8b12((a6)7(c3)7)
Apply the power rule and multiply exponents, (am)n=amn.
196a8b12(a6⋅7(c3)7)
Multiply 6 by 7.
196a8b12(a42(c3)7)
196a8b12(a42(c3)7)
Move a42.
196(a42a8)b12(c3)7
Use the power rule aman=am+n to combine exponents.
196a42+8b12(c3)7
Add 42 and 8.
196a50b12(c3)7
196a50b12(c3)7
Apply the power rule and multiply exponents, (am)n=amn.
196a50b12c3⋅7
Multiply 3 by 7.
196a50b12c21
196a50b12c21
Simplify (14a^4b^6)^2(a^6c^3)^7