Divide each term in by .

Cancel the common factor of .

Cancel the common factor.

Divide by .

To create a trinomial square on the left side of the equation, find a value that is equal to the square of half of .

Add the term to each side of the equation.

Simplify each term.

Apply the product rule to .

Raise to the power of .

Raise to the power of .

Simplify .

Simplify each term.

Apply the product rule to .

Raise to the power of .

Raise to the power of .

To write as a fraction with a common denominator, multiply by .

Write each expression with a common denominator of , by multiplying each by an appropriate factor of .

Multiply and .

Multiply by .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply by .

Add and .

Factor the perfect trinomial square into .

Take the square root of each side of the equation to set up the solution for

Remove the perfect root factor under the radical to solve for .

Simplify the right side of the equation.

Rewrite as .

Simplify the numerator.

Rewrite as .

Pull terms out from under the radical, assuming positive real numbers.

Simplify the denominator.

Rewrite as .

Pull terms out from under the radical, assuming positive real numbers.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the to find the first solution.

Move all terms not containing to the right side of the equation.

Subtract from both sides of the equation.

Combine the numerators over the common denominator.

Subtract from .

Cancel the common factor of and .

Factor out of .

Cancel the common factors.

Factor out of .

Cancel the common factor.

Rewrite the expression.

Next, use the negative value of the to find the second solution.

Move all terms not containing to the right side of the equation.

Subtract from both sides of the equation.

Combine the numerators over the common denominator.

Subtract from .

Cancel the common factor of and .

Factor out of .

Cancel the common factors.

Factor out of .

Cancel the common factor.

Rewrite the expression.

Move the negative in front of the fraction.

The complete solution is the result of both the positive and negative portions of the solution.

Solve by Completing the Square 12x^2+25x=7