Rewrite as .

Rewrite as .

Since both terms are perfect cubes, factor using the sum of cubes formula, where and .

Apply the product rule to .

Raise to the power of .

Multiply by .

Multiply by .

One to any power is one.

If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .

Set the first factor equal to .

Subtract from both sides of the equation.

Divide each term by and simplify.

Divide each term in by .

Cancel the common factor of .

Cancel the common factor.

Divide by .

Move the negative in front of the fraction.

Set the next factor equal to .

Use the quadratic formula to find the solutions.

Substitute the values , , and into the quadratic formula and solve for .

Simplify.

Simplify the numerator.

Raise to the power of .

Multiply by .

Multiply by .

Subtract from .

Rewrite as .

Rewrite as .

Rewrite as .

Rewrite as .

Factor out of .

Rewrite as .

Pull terms out from under the radical.

Move to the left of .

Multiply by .

Simplify .

Simplify the expression to solve for the portion of the .

Simplify the numerator.

Raise to the power of .

Multiply by .

Multiply by .

Subtract from .

Rewrite as .

Rewrite as .

Rewrite as .

Rewrite as .

Factor out of .

Rewrite as .

Pull terms out from under the radical.

Move to the left of .

Multiply by .

Simplify .

Change the to .

Simplify the expression to solve for the portion of the .

Simplify the numerator.

Raise to the power of .

Multiply by .

Multiply by .

Subtract from .

Rewrite as .

Rewrite as .

Rewrite as .

Rewrite as .

Factor out of .

Rewrite as .

Pull terms out from under the radical.

Move to the left of .

Multiply by .

Simplify .

Change the to .

The final answer is the combination of both solutions.

The final solution is all the values that make true.

Solve by Factoring 27x^3+1=0