Simplify by moving inside the logarithm.

For the equation to be equal, the argument of the logarithms on both sides of the equation must be equal.

Take the root of both sides of the to eliminate the exponent on the left side.

The complete solution is the result of both the positive and negative portions of the solution.

Simplify the right side of the equation.

Rewrite as .

Pull terms out from under the radical, assuming positive real numbers.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the to find the first solution.

Next, use the negative value of the to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Exclude the solutions that do not make true.

Solve for x 2 log of x = log of 64