(x+7)2=21

Take the square root of each side of the equation to set up the solution for x

(x+7)2⋅12=±21

Remove the perfect root factor x+7 under the radical to solve for x.

x+7=±21

First, use the positive value of the ± to find the first solution.

x+7=21

Subtract 7 from both sides of the equation.

x=21-7

Next, use the negative value of the ± to find the second solution.

x+7=-21

Subtract 7 from both sides of the equation.

x=-21-7

The complete solution is the result of both the positive and negative portions of the solution.

x=21-7,-21-7

x=21-7,-21-7

The result can be shown in multiple forms.

Exact Form:

x=21-7,-21-7

Decimal Form:

x=-2.41742430…,-11.58257569…

Solve using the Square Root Property (x+7)^2=21